
,../"f, j

J

Using modules with MPICH-G2 (and

Johnny Chang

johnny @ nas.nasa.gov

July 9, 2001

Last Modified: October 19, 2001

"loose ends")

Table of Contents

• Abstract

• Prerequisites

• Background
• Introduction

• Rich Environment

• Experiments with module.csh

• (jobtype=single)
• EXAMPLES

• Summary

• Appendices

Abstract

A new approach to running complex, distributed MPI jobs using the MPICH-G2 library is described.

This approach allows the user to switch between different versions of compilers, system libraries, MPI

libraries, etc. via the "module" command. The key idea is a departure from the prescribed

"(jobtype=mpi)" approach to running distributed MPI jobs. The new method requires the user to provide

a script that will be run as the "executable" with the "(jobtype=single)" RSL attribute. The major

advantage of the proposed method is to enable users to decide in their own script what modules,

environment, etc. they would like to have in running their job.

Prerequisites

This document is intended for application developers and users who want to run complex, distributed

MPI jobs across two or more machines. It assumes the reader is familiar with Unix and the basics of

Globus as expressed in the Globus Quick Start Guide.

Background

In mid=April 2001, Nick Karonis (karonis@olympus.cs.niu.edu) discovered that a bug in SGI's

implementationof mpi causessomecodesto hang.Thisparticularbugwasfixed in newerreleasesof
thempt module(mpt.l.4.0.2 andhigher).Thequestionthenaroseasto how onewouldgoaboutusing
moduleswith Globus/MPICH-G2(http://www.hpclab.niu.edu/mpi/).Onesolution,implementedby
JudithUtley (utley@marcy.nas.nasa.gov),is to hard-wirethenewerraptmoduleinto all MPICH-G2
jobs. Bettersolutionsthatdo notrely onaparticularhard-wiringof modulesarebeingcontemplated.

This is an importantproblembecausetheability for a userto switchbetweenmodulesis crucial for a
widevarietyof reasons.For example,somecodesrun on older modules but not on newer ones or vice

versa. As modules on a system are updated, users may need to switch between modules to assess the

impact, if any, of the change. U_;ers may need to switch between modules to determine why a code that

used to run a year ago, now behaves differently. These are just a few of the many reasons why various

versions of modules are available on the system at any given time. This paper describes a solution that

any IPG user could use right auay that would not rely on any future "fix" to the Globus middleware or
tools or services derived thereof.

This step-by-step description is incremental in nature and touches upon a number of techniques that I've

found useful while learning to use the IPG. They form the "loose ends" that I've chosen to include in

this document. Readers can skip to the solution for using modules with MPICH-G2 by clicking here.

Introduction

When a user logs into a machine at NAS (NASA Advanced Supercomputing division), a rich

environment (paths, aliases, emironment variables, etc.) is already pre-defined to provide easy
accessibility to Unix commands. This facility is replicated in jobs submitted to PBS. That is, batch jobs

enjoy much of the same computing environment (and much more) as interactive jobs (run at the

command prompt). Jobs submitted to Globus, on the other hand, have almost a non-existent

environment. Even a simple 'ls' command to list files requires some knowledge of where (which

directory) the command resides or some "trick" to provide an instantaneous environment to process the

command. This was a design issue and some email discussion along this issue is attached in Appendix

B.2. Globus provides no mechanism for using modules currently. Users who want to use modules will

have to do so in their own scripts.

Rich Environment

The rich environment that users have become accustomed to is completely due to four files that are

executed (source'd) when a user logs in, or when a PBS batch job is run, and they are (for the C shell

user):

/etc/cshrc

$HOME/.cshrc

/usr/loc al/lib/init/c shrc.global

$HOME/.login

The cshrc.global file is source'd from the user's SHOME/.cshrc file unless they have explicitly
commented this out. Similar files exist for users of other shells.

The "module" command, which allows users to load/switch modules is (for me)

evelyn:/u/johnny> which module

module: aliased to /usr/bsd/logger -i -p

eval '/opt/modules/modules/bin/modulecmd tcsh f*'

local4.notice "module '*" ;

and this alias is defined in/opt/modules/modules/initlcsh (or/opt/modules/modules/init/tcsh) which is

source'd from both/etc/cshrc *and*/usr/local/lib/init/cshrc.global (again, similar files exist for users of

other shells).

This is the first piece of the puzzle. Namely, if the 'module' command is not enabled, the user will need

to explicitly have the line

source /opt/modules/modules/init/csh

in their script before using modules. It doesn't hurt to have this line in the script even if the module

command is already enabled. This method of enabling the module command is universal across all the

SGI Origins and Cray computers in the NASA IPG.

To see the current setup with regards to modules for Globus jobs, consider the following script called
'module.csh':

#! /bin/csh

set verbose

sleep i00 ' sleep for i00 seconds

module list

which mpirun
...

The first line starts up a C shell and sources the $HOME/.cshrc file. The second line (set verbose) causes

all subsequent commands that are run to be echo'd to stderr. The third line (sleep 100) is one that I use a

lot when I want to see what PBS script was created by the Globus-to-PBS interface. More on this later.

The fourth line lists what modules, if any, are loaded for this job (and it will also serve as a test for

whether the 'module' command works or not).

Experiments with module.csh

First, a Globus job submitted to evelyn.nas.nasa.gov's jobmanager-fork:

evelyn:/u/johnny> globusrun -s -r evelyn '&(executable:/u/johnny/module.csh)'

sleep i00 ' sleep for i00 seconds

mpirun not in /usr/nas/bin /usr/bin /usr/sbin /usr/bin/Xll /usr/local/pkg/pgi/sgi/bi

/usr/local/pkg/pgi/bin /usr/prg/bin /usr/bsd /usr/local/pbs/bin /usr/local/pbs/sbin

/usr/local/bin /usr/java/bin /usr/etc /usr/prg/pkg/globus/l.l.3/tools/mips-sgi-irix6

/etc

module list

No Modulefiles Currently Loaded.

setenv _MODULESBEGINENV_ /u/johnny/.modulesbeginenv ;

which mpirun
..

Result: No modules loaded and the mpirun command is not found in my path. Interestingly, the

'module' commandis enabledeventhoughnomodulesareloaded.This is because/etc/cshrcwasnot
runandsonomodulesareloaded,but/opt/modules/modules/init/cshwassource'dfrom
/usr/local/lib/initlcshrc.global. (Note: stdout and stderr output are mixed when returned to the screen.)

Second, a Globus job to hopper nas.nasa.gov's jobmanager-pbs:

evelyn:/u/johnny> globusrun -s -r hopper

sleep i00 _ sleep for i00 seconds

module list

Currently Loaded Modulefikes:

i) modules 2} MIPSpro 3) mpt

which mpirun

<*motd snipped*>

'&(executable=/ic/johnny/module.csh) '

[i] 1091589 ! execut,_ble run in background, see

/opt/mpt/mpt/usr/bin/mpirun

[i] Done /ic/johnny/module.csh <

logout

4) scsl

PBS script below.

/dev/null

Result: The default modules are loaded (PBS jobs automatically execute/etc/cshrc at start-up) and the

mpirun from the *default* mpt module is accessed from the script.

I've often found it useful to look at the PBS script that is generated by the Globus-to-PBS interface

/globus/deploy/libexec/globus-script-pbs-submit. One can view the PBS script when the PBS job id is

known. This is the reason I insert sleep commands in my script -- to give me enough time to execute the

following two commands:

turing:/cluster/hopper/PBS/mom_priv/jobs> qstat -au johnny

fermi.nas.nasa.gov: NAS O:TTigin 2000 Cluster Frontend

Tue Jul I0 17:26:35 2001

Server reports 1 job total (R:I Q:0 H:0 W:0 T:0 E:0)

hopper: 1/30 nodes used, 58 CPU/14210mb free, load 56.18 (R:I T:0 E:0)

Req'd Req'd Elap

Job ID Username Queue Jobname SessID TSK Memory Nds wallt S wallt
...

26023.fermi johnny su_nit STDIN 810567 2 490mb 1 00:05 R 00:00

The PBS job id is 26023 and the status of the job is Running (2nd to last column). Then, in the directory

shown on the command prompt, one can view one's own PBS scripts once the PBS job has started

running (note: 'Is' will not execute here since the directory's permission is 751)

turing:/cluster/hopper/PB3/mom_priv/jobs> cat 26023.fermi.SC

PBS batch job script built by Globus job manager

#PBS -o /u/johnny/.globus/.gass cache/globus gass_cache_994811212

#PBS -e /u/johnny/.globus/.gass cache/globus gass cache 994811213

#PBS -i ncpus=l

#PBS -v GLOBUS_GRAM_MYJOB_CONTACT:URLx-nexus://hopper.nas.nasa.gov:24803/, \

X509_CERT_DIR=/usr/prg/pkg/globus/l.l.3/.deploy/share/certificates, \

GLOBUS GRAM JOB CONTACT=https://hopper.nas.nasa.gov:24802/810796/994811209/, \

GLOBUS_DEPLOY_PATH:/usr/prg/pkg/globus/l.l.3/.deploy, \

GLOBUS INSTALL_PATH=/usr/prg/pkg/globus/l.l.3, \

X509_USER PROXY=/u/johnny/.globus/.gass cache/globus gass cache 994811211,

Changing to directory as requested by user

cd /u/johnny

Executing job as requested by user

/ic/johnny/module.csh < /dev/null &

wait

More interestingly, when the (jobtype:mpi) parameter is added to the RSL, one gets a PBS script that
contains:

turing:/cluster/hopper/PES/mom_priv/jobs> cat 26282.fermi. SC

PBS batch job script built by Globus job manager

#PBS -o /u/johnny/.globus/.gass_cache/globus gass cache 994885658

#PBS -e /u/johnny/.globus/.gass_cache/globus gass cache 994885659

#PBS -i ncpus=l

#PBS -v GLOBUS GRAM MYJOE_CONTACT=URLx-nexus://hopper.nas.nasa.gov:41340/, \

X509 CERT_DIR=/usr/prg/pkg/globus/l.l,3/.deploy/share/certificates, \

GLOBUS_GRAM_JOB_CONTACT=https://hopper.nas.nasa.gov:41339/l106709/994885655/,\

GLOBUS_DEPLOY_PATH=/usr/_:rg/pkg/globus/l.l.3/.deploy, \

GLOBUS_INSTALL_PATH:/usr/prg/pkg/globus/l.l.3, \

X509 USER_PROXY=/u/johnny/.globus/.gass cache/globus_gass_cache 994885657,

Changing to directory as requested by user

cd /u/johnny

Executing job as requested by user

module load mpt.new

module swap mpt mpt.new

/opt/mpt/mpt.new/usr/bin,mpirun -np 1 /ic/johnny/module.csh < /dev/null

The last line of the PBS script is the *wrong* way to run a user script (module.csh), but this example

shows three points:

1. the addition of (jobtype:mpi) into the RSL triggers a hard-wired load and swap to the mpt.new

module as implemented by Judith Utley,

2. the 'executable' module.csh is run with a hard-wired mpirun command which is the wrong usage

for runninguserscripts,and

, the actual version of mpir,m that is being used in the module.csh script is/usr/bin/mpirun (which

differs from the mpirun in both the mpt and the rapt.new modules). This last point can be seen by

running the experiment and looking for the output to the 'which mpirun' command (left as an

exercise to the reader). The reason for this is somewhat obscure, but it has to do with the fact that

SGI's mpirun command calls the array services library, which, in turn, clobbers the user's PATH

environment and replaces it with: "/usr/sbin:/usr/bsd:/sbin:/usr/bin:/usrPoin/X11 :". The processes

started by mpirun inherit ihis path, and within the module.csh script, the only mpirun that is found

by the 'which mpirun' command is the one under/usr/bin.

These three experiments show considerable variability in which (and whether or not) modules are

loaded, and which (if any) version of mpirun is accessed depending on how the Globus job is run. The

major advantage of the method proposed in this paper is to remove this variability by having the

user decide in their own script what modules, environment, etc. they would like to have in running

their job. Once this shell script is written, and the intention is to have it run as the executable in a

Globus job, the only appropriate jobtype to use in the RSL is 'single'. This is the second piece of the
puzzle.

(jobtype=single)

Turning now towards running distributed MPI jobs on 2 (or more machines) with MPICH-G2, the main

question is whether or not message passing between different machines using MPICH-G2 is possible

with (jobtype=single). From a historical perspective, Globus jobs using MPICH-G did not specify a

'jobtype' parameter and thus defaulted to (jobtype=multiple). With MPICH-G2, the RSL created by the

mpirun script (link) from the appropriate MPICH-G2 directory used a (jobtype=mpi) RSL parameter.

The different 'jobtypes' result in different ways that the MPI job is run. With (jobtype=multiple) the

MPI job is run as (assuming no stdin):

path to executable/mpi_executable < /dev/null &

path to executable/mpi executable < /dev/null &

path to executable/mpi executable < /dev/null &

wait

The number of occurrences of mpi_executable (in the batch script) is determined by the 'count'

parameter in the RSL. When the MPI job is run across multiple hosts, a similar repeating pattern of the

mpi_executable appears in the batch script for each subjob (the number of repetitions is determined by

the 'count' parameter in each subjob).

With (jobtype=mpi) the MPI job is run as (again, assuming no stdin):

module 2oad mpt.new

module swap mpt mpt.new

/opt/mpt/mpt.new/usr/bin/mpirun

mpi executable < /dev/nuill

-np count_parameter path to executable/

That is, the NAS hard-wired path to the vendor's new mpirun is used to run mpi executable.

With theproposed(jobtype=single)wayof runningMPICH-G2jobs via a userscript, thejob is runas
(assumingnostdin):

path to user_script/user_script < /dev/null

This is fine for an MPI job run out of a single user script on a single host. The question then is how one

runs a distributed MPI job across several hosts. The answer can be found by looking at the RSL

generated by the mpirun script in either the MPICH-G or MPICH-G2 directories. Reproduced here is an

example taken from my Globus user tutorial.

evelyn% cat hello_duroc.rsl

+

& resourceManagerContact="evelyn.nas.nasa.gov")

count=4)

jobtype=mpi)

label="subjob 0")

environment:(GLOBUS_EUROC_SUBJOB_INDEX 0))

directory:"/u/_ohnny/duroc")

executable="/u/johnny/duroc/hello_mpichg")

&(resourceManagerContact:"turing.nas.nasa.gov")

(count=6)

(jobtype=mpi)

(label:"subjob 4")

(environment=(GLOBUS_E, UROC_SUBJOB_INDEX I))

(directory:"/u/johnny/duroc")

(executable="/u/johnny/duroc/hello_mpichg"]

This RSL is used to run a simple "Hello World" MPI program across evelyn and turing, using 4

processes on evelyn and 6 processes on turing. The only differences between the MPICH-G and

MPICH-G2 RSLs are the greatly shortened resourceManagerContact string in the latter version and the

previously alluded to (jobtype=mpi) RSL parameter. The key ingredient (link) for the coordination and

communication across different hosts is the GLOBUS_DUROC SUB JOB_INDEX environment. The

label parameter is superfluous (but may be useful in interpreting error messages which refer to subjobs

by their label). This key ingredient is the third and final piece of the puzzle.

The above RSL will run an MPI job with a total number of 10 processes (not counting the shepherd

processes). The four processes associated with GLOBUS_DUROC_SUBJOB_INDEX 0 will run with

ranks 0 through 3, and the six processes associated with GLOBUS_DUROC_SUBJOB_INDEX 1 will

run with ranks 4 through 9. The order of the subjobs described by each GRAM type RSL (&(......)) is

unimportant, but the indices associated with the GLOBUS_DUROC_SUBJOB_INDEX environment

must run from 0 through the number of subjobs minus one.

In the section below, we look at several examples of running MPI jobs under MPICH-G2 with

(jobtype=single). It must be stressed that this is not the prescribed method for running MPICH-G2 jobs,

therefore, several issues regarding correctness, performance, and limitations will also be addressed.

EXAMPLES

Example 1: Hello World MPI program.

For pedagogical reasons, I've included here all the necessary parts for running my MPI version of the

"Hello World" program using scripts.

evelyn:/u/johnny/duroc/mp[ch-g2> cat hello mpi.f

program hello mpi

! A basic "Hello World" M?I program intended to demonstrate how to

' execute an MPI program under Globus on the NAS IPG

include "mpif.h"

integer date time(8)

character(len=10) big ben(3), hostname

call MPI INIT(ierr)

call date and_time(big_ben(1), big_ben(2), big ben(3), date time)

call MPI_COMM RANK(MPI COMM WORLD, myid, ierr)

call MPI_COMN SIZE(MPI COMM_WORLD, numprocs, ierr)

call gethostname(hostname)

print *,'Process #', myid, 'of', numprocs, 'at time: ',

& big_ben(l), big be_(2),' on host: ',trim(adjustl(hostname))

call MPI_FINALIZE(ierr)

end

The gethostname routine is a Fortran-to-C interface that uses the well-known C function call by the
same name:

evelyn:/u/johnny/duroc/mpich-g2> cat ftoc.c

void gethostname_(char *hostname}

{
#include

gethostname(hostname, I0);

return;

}
...

The compilation and linking using the MPlCH-G2-provided compiler scripts (which I' ve aliased via

environment variabIe settings):

evelyn:/u/johnny/duroc/mpich-g2> echo SMPICC

/globus/mpich-n32/bin/mpicc

evelyn:/u/johnny/duroc/mpich-g2> echo SMPIF90

/globus/mpich-n32/bin/mpif90

is done via:

evelyn:/u/johnny/duroc/mvich-g2> SMPICC -c ftoc.c

evelyn:/u/johnny/duroc/mpich-g2> $MPIF90 -o hello mpichg2 hello_mpi.f ftoc.o

The user script that enables the module command and loads the rapt module is:

evelyn:/u/johnny/duroc/mzich-g2> cat hello_mpichg2.scr

#! /bin/csh

source /opt/modules/modules/init/csh

module load mpt

mpirun -np SNP ./hello mgichg2

It takes an environment variable (which I've called NP) that must be set in the RSL:

evelyn:/u/johnny/duroc/mzich-g2> cat hello_script.rsl

+

&(resourceManagerContact:"evelyn.nas.nasa.gov")

(rsl_substitution = (rprocs "4"))

(count:$(nprocs))

(jobtype=single)

(environment=(GLOBUS [UROC_SUBJOB_INDEX 0) (NP ${nprocs))

(directory="/u/johnny/duroc/mpich-g2")

(executable="/u/johnn},/duroc/mpich-g2/hello_mpichg2.scr")

&(resourceManagerConta<t:"turing.nas.nasa.gov")

(rsl substitution = (riprocs "6"))

(count:$(nprocs))

(jobtype=single)

(environment=(GLOBUS DUROC SUBJOB INDEX i) (NP $(nprocs)}

(directory="/u/johnny/duroc/mpich-g2")

(executable="/u/johnny/duroc/mpich-g2/hello mpichg2.scr")

This RSL assumes that I have already setup the appropriate directory structure on evelyn and turing, and

that I have the appropriate scripts (made executable) and MPI executables in the correct locations on the
two machines.

The Globus job is launched via:

evelyn:/u/johnny/duroc/mpich-g2> globusrun -s -f hello script.rsl

with the result:

Job Limits not enabled: Uob not found or not

Job Limits not enabled: Cob not found or not

Process # 4 of i0 at title: 20010709 145346

Process # 5 of i0 at time: 20010709 145346

Process # 6 of I0 at time: 20010709 145346

Process # 8 of I0 at time: 20010709 145346

Process # 7 of i0 at tirae: 20010709 145346

Process # 9 of i0 at time: 20010709 145346

Process # 0 of i0 at time: 20010709 145346

Process # 1 of I0 at time: 20010709 145346

Process # 2 of i0 at time: 20010709 145346

Process # 3 of i0 at time: 20010709 145346

part of job

part of job

.692 on host: turing

.699 on host: turing

692 on host: turing

692 on host: turing

692 on host: turing

692 on host: turing

660 on host: evelyn

660 on host: evelyn

660 on host: evelyn

660 on host: evelyn

(Since the upgrade of the OS to IRIX 6.5.10f, there have been some error messages that presage the

output, but they are innocuous)

The output shows the correct number of processes and rank running on evelyn and turing. The time

stamp is in the form YYYYMMDD HHMMSS.fractional seconds. This example shows that the two

subjobs are synchronized to start at the same time (modulo a time zone change) on the MPI_INIT call. I

have run this example many times, and occasionally, have seen an approximately 5 minute delay

between the time stamps on the two hosts. This is *not* due to the clocks on the two hosts going out of

sync, but appears to arise from some underlying communication layer which I do not yet understand. It

is unrelated to the (jobtype=smgle) RSL parameter since the same problem arises with (jobtype=mpi).

Example 2: ring example

This example uses the ring.c code from the MPICH-G2 website (http://www.niu.edu/mpi/)(link) The

new wrinkle is thattheexecutableandscriptsall resideononemachine,evelyn,andthegoal is to run
thisMPI job across3machinesevelyn,turing,androgallo.Theuserscript (ring.scr),executable(ring),
andRSL (ring_script.rsl)all resideunderevelyn:/u/johnny/duroc/mpich-g2.Thescript (ring.scr)canbe
staged(or transferred)to turing androgallovia the$(GLOBUS_GASS_URL)#prefix. Thestagedscript
will residein the .globus/.gasscachedirectoriesonturing androgallofor thedurationof thejob and
will bebedeletedautomaticall)attheendof thejob.

TheRSL is:

evelyn:/u/johnny/duroc/mpich-g2> cat ring_script.rsl

+

(& (resourceManagerContacz:"evelyn.nas.nasa.gov")

(rsl_substitution=(nprocs "5"))

(count:$(nprocs))

(jobtype=single)

(directory=$(HOME)/duroc/mpich-g2)

(environment=(GLOBUS_Di/ROC SUBJOB_INDEX 0) (NP

(executable=$(HOME)/du_oc/mpich-g2/ring.scr)

$(nprocs)))

resourceManagerContacL:"turing.nas.nasa.gov")

rsl_substitution=(nprzcs "4"))

count=$(nprocs))

jobtype=single)

environment=(GLOBUS D!UROC SUBJOB INDEX i) (NP $(nprocs)))

executable=$(GLOBUSRUI__GASS URL)#$(HOME)/duroc/mpich-g2/ring.scr)

&(resourceManagerContact:"rogallo.larc.nasa.gov")

(rsl_substitution=(nprocs "3"))

(count:$(nprocs))

(jobtype=single)

(environment=(GLOBUS DZROC_SUBJOB INDEX 2) (NP $(nprocs)))

(executable=$(GLOBUSRUZ GASS URL)#$(HOME)/duroc/mpich-g2/ring.scr)

Notice that for the subjob to be run on evelyn there is a directory change to $HOME/duroc/mpich-g2,

where my ring executable resides. For the subjobs to be run on turing and rogallo, the ring.scr script will

do a remote file transfer of the _ing executable and run from the defaulted $HOME directories.

The ring.scr script is:

evelyn:/u/johnny/duroc/mpich-g2> cat ring.scr

#! /bin/csh

source /opt/modules/modules/init/csh

module load mpt

if ('hostname' != "evelyn") then

scp evelyn.nas.nasa.gov:duroc/mpich-g2/ring

endif

mpirun -np $NP ./ring

In this example, the line "source/opt/modules/modules/init/csh" is crucial to enable the module

command. It is not automatically enabled for users accessing rogallo at the current time, and so sourcing

$HOME/.cshrc (via #!/bin/csh_ is not sufficient for the module command, but is sufficient for all the

other commands in the script. Another important, albeit subtle, detail is the use of 'scp' in the file

transfer. On rogallo, the 'scp' command is the GSI enabled version of 'scp', which means that it does

not require a password when a valid full proxy exists. When the subjob on rogallo starts, it receives a

full proxy from evelynwhichremainsvalid for thedurationof thejob. On turing, the 'scp' commandis
notGSIenabled,andusestheJhostsor/etc/hosts.equivwith RSAhostauthenticationmethodto
authenticate.Sinceturing-ec.nas.nasa.govis in evelyn's/etc/hosts.equivfile, thescpwill alsonot
requireapasswordfor file transfer.Lastly,onecouldhaveadded(to ring.scr)thedeletionof the 'ring'
executableat theendof thejob when'hostname'!= "evelyn". I havechosento leavethe 'ring'
executablebehindto giveonea warmandfuzzy feelingthat everythingis working asexpected.

Executionof thisjob appearsas:

evelyn:/u/johnny/duroc/mz,ich-g2> globusrun -s -f ring_script.rsl

Job Limits not enabled: Job not found or not part of job

Job Limits not enabled: Job not found or not part of job

Master: end of trip 1 of i: after receiving passed num=12 (should be

ocs=12) from source=ll

:trip*numpr

The passed_num=12 correspor_dsto the sum of 5, 4, and 3 processes run on evelyn, turing, and rogallo,

respectively.

Example 3: Nick Karonis' root_of_problem.c and bad.c

As noted in the beginning of this document, Nick Karonis discovered a bug in SGI's implementation of
MPI that caused some codes to hang. The link to that email also leads to the two codes that he provided.

The code "bad.c" reproduces the hang when run using MPICH-G2 with settings procA = 1, procB = 2,

but works with SGI!s MPI independent of procA and procB settings. This assertion cannot be verified

now by running a Globus job with (jobtype=mpi) on the NAS machines because the mpt.new module,

which fixes the hang, has been hard-wired into (jobtype--mpi) jobs. However, with (jobtype--single) and

running a script as the executable, one can freely switch between modules and verify the assertion. One

such script is given below.

The "root_of_problem.c" code differs from "bad.c" only in an MPI_Comm_dup function call (and

another printf statement), and mimics how MPICH-G2 implements the native MPI_Intercomm_create
function call in the "bad.c" code. MPICH-G2 implements some MPI functions by calling one or more

vendor-supplied MPI functions. This code will hang when run with settings procA = 1, procB = 2 and

using SGI's mpt. 1.4.0.1 or *some* earlier modules (code fails/hangs with versions 1.4.0.1, 1.4.0.0, and

1.3.0.4, passes/runs with versions 1.3.0.0, 1.2.1.2, and 1.4.0.3).

As an aside, it is worth mentioaing that the mpt module is used in three different phases. (1) During

compilation/linking, the MPI hbrary is used to resolve all the MPI function calls, (2) When launching

the MPI job with SGI's mpirun, the version of the mpirun command invoked depends on which rapt
module is loaded and, therefore, what is in the user path, and (3) During runtime, the version of the MPI

library accessed depends on which mpt module is loaded. SGI uses dynamic libraries which are accessed

during runtime as opposed to being statically compiled into the executable. It is only in the third phase
that the version of the loaded rapt module matters for creating the hang. But for practical purposes it is

best to be consistent in using the same modules for all three phases.

In this example, we will run both codes across evelyn and turing, with three processes on evelyn and two

on turing. It turns out that the processes with ranks 0, 1, and 2 all need to be on the same host to

reproduce the hang. The user script (hang.scr) is:

#! /bin/csh

source /opt/modules/modules/init/csh

module load mpt.new

if ('hostname' != "evelyn") then

scp evelyn.nas.nasa.goJ:duroc/mpich-g2/bad

scp evelyn.nas.nasa.gov:duroc/mpich-g2/root_of_problem
endif

mpirun -prefix "%@ " -np SNP ./bad

#mpirun -prefix "%@ " -np $NP ./root of problem

if ('hostname' != "evelyn"l then

rm -f bad root_of problem

endif

..

To obtain the cases that hang, one loads mpt instead of mpt.new in the script.

WARNING: If you try running the cases that hang under MPICH-G2, remember to clean up the

stray processes after experimentation. The stray processes will continue to consume resources and

rack up CPU time.

Note that I have commented out one of the mpirun commands. The current setup in MP]CH-G2 does

not allow running two MPICH-G2-compiled executables out of the same script (in a serial fashion as

in the script above). Attempts to run a second MPI program out of the same script will encounter error

messages of the type:

globus_duroc_barrier: aborting job!

globus_duroc_barrier: reason: our checkin was invalid!

It must be emphasized that this is a limitation inherent in MPICH-G2 and not in using (jobtype:single).

The prescribed (jobtype=mpi) method of running MPI jobs under MPICH-G2 allows running only one

MPICH-G2 job in a single Globus job submission. This limitation presents a problem for a class of

problems that require running distributed, complex MPI jobs involving pre- and/or post-processing, all

of which might entail running two or more MPI jobs out of the same script. The key to the solution is to

realize that the limitation is present only in MPICH-G2 compiled executables, but not with native MPI.

To run the afore-mentioned "complex" problem, one would build the pre- and/or post-processing MPI

executables with the native MPI library, and the running of these parts of the script will be done on only

one host (or more than one hos! as long as it is not distributed across hosts in the MPICH-G2 sense).

Presumably, the computation in the pre- and/or post-processing parts of the job are less time-consuming

and do not need to be run as a single code distributed across two or more hosts. More discussion on this

point will be presented in Example 4.

The last point to note about the user script above is the option given to mpirun which enables the output

from the different processes to be prefixed with a hostname. With a user script, one is free to make this

choice, which would otherwise be lacking with (jobtype=mpi).

The RSL used for this example is:

+

(&(resourceManagerContact:"evelyn.nas.nasa.gov")

(rsl_substitution=(nprocs "3"))

(count=$(nprocs))

(jobtype=single)

(directory:$(HOME)/duroc/mpich-g2)

(environment=(GLOBUS_DUROC SUBJOB INDEX 0) (NP $(nprocs))

(executable=$(HOME)/duroc/mpich-g2/hang.scr)

)
(&(resourceManagerContact="turing.nas.nasa.gov")

(rsl_substitution=_nprocs "2"_)

(count=$(nprocs))

(jobtype=single)

(environment=(GLOBUS_DUROC_SUBJOB INDEX I) (NP $(nprocs)

(executable=$(GLOBUSRUN_GASS URL)#$(HOME)/duroc/mpich-g2

)
..

)
hang. scr)

Example 4: "Real" code example

All three of the previous examples could have been run using the conventional MPICH-G2 approach

with (jobtype=mpi). In this example, we consider some issues that "real" MPI applications face which

cannot be run satisfactorily in the conventional (jobtype=mpi) approach.

Issues:

I. Need to allocate an extra processor for the shepherd process to avoid performance problems.

Whenever an MPI job with NP processes are run via "mpirun -rip NP ...", there are actually NP+I

instances of the executable running. The extra "shepherd" process consumes very little CPU time,

but is capable of destroying any load balancing built into the code. At a minimum, this implies that

setting NP to the value in the (count=##) RSL parameter may be inadequate. Additionally, on

some time-sharing machines such as the Crays, the batch job daemons that monitor job resource

usage might kill the job if they catch NP+I processes running when only NP were

requested/allowed.

. Even if the NP parametel in mpirun is set to count - 1, this would still be inadequate for hybrid

MPI+OpenMP codes. These codes take advantage of any multi-level parallelism present in the

algorithm by using MPI for the (outer) course-grained parallelism and OpenMP for the (inner)

fine-grained parallelism. In this case, the value of NP will need to be much less than the "count"

RSL parameter which specifies the processor count resource.

3. "Real" MPI applications require input/data files. There are many ways that the filenames of these

input/data files become "associated" with those required for the application. For example,

in -s input case47.dat fort.10

creates a symlink between a particular input/data file with an expected target. This could also be

accomplished with the 'assign' command which might be adorned with other 'assign' attributes

for controlling data conw:rsion during I/O. The input/data filenames could be renamed just prior to

launching mpirun. Certainly, one could "prepare" all the filename associations (via ln, assign, or

my commands) before launching the MPICH-G2 job, but that would be very restrictive, especially

for projects where many cases need to be run.

o "Real" MPI applications involve substantial pre- and/or post-processing around the mpirun

command. These go beyond making sure that the requisite input/data files are in the right place

(Issue 3). Again, these steps could be segregated away from launching the MPICH-G2 job, but this

would be a major design flaw. The directory where the execution takes place could be volatile and

exist only for the duratio_ of the MPICH-G2 job.

o The default set of modules (MIPSpro, mpt, and scsl) may be inadequate for certain applications at

any given time. In Example 3 above, the problem attributed to the mpt module only manifested

itself in some versions of the mpt module.

These are just a few of the issues that could be resolved by using the method proposed in this document.

One of the main advantages of asing MPICH-G2, which has heretofore not been mentioned except for a

hint in the previous example, is the ability to "tie" two or more applications together by passing data

between the applications via MPI. The applications in the two subjobs do not have to be the same. In

fact, in the more general case u_ing scripts and (jobtype=single), the work done in the different subjob

scripts could be completely different albeit related through the requisite passing of information. In fact,

even this last coupling is unnecessary except for a reason to couple and use MPICH-G2. The key to the

coupling is that codes compiled with the MPICH-G2 library will be synchronized at the MPI_INIT

function call, and the processor ranks are determined by the processor counts passed to mpirun in

conjunction with the GLOBUS DUROC_SUB JOB INDEX environment. If the script in one subjob

begins to run before the other, it will run up to the code compiled with the MPICH-G2 library and then

stall and spin cycle at the MPI_INIT funtion call waiting for the other subjob to reach its corresponding

MPI INIT function call. If the _:wo subjobs are run on separate batch systems, some care in choosing the

maxWallTime resource must be exercised to allow for asynchronous job start times.

Example 5: NAS Parallel Benchmarks (NPB2.3)

In the previous examples, we looked at the issues of correctness and limitations accompanying the use

of (jobtype=single) to run MPICH-G2 jobs. In this example, we look at the performance issue. That is,

whether jobs run slower when the jobtype parameter is switched from mpi to single. For this, we

examine the performance of some well-known NAS Parallel Benchmarks (NPB) run under different
scenarios.

The three NPB's chosen for thi_ study are:

• bt: linear equations for implicit scheme in Navier-Stokes equation

• lu: LU decomposition for Navier-Stokes equation

• sp: linear equations for Navier-Stokes equation

They can each be compiled and run with different 'Classes'. Class A is the smallest case and class B

mimics a medium size problem. The number of processes required to run each benchmark is also built in

at compilation time. Thus, lu.A.4 corresponds to the class A version of the lu benchmark run with 4

processes. Table 1 shows the timings for the three benchmarks run as a single MPICH-G2 job with 4

CPUs on one host (jobtype=mpi) or split as two subjobs with 2 CPUs in each subjob (2+2). The latter

case was run with (jobtype=mpi) and with (jobtype=single), with both 2-CPU subjobs on the same host

(hopper or steger) or split betw_:en two hosts (2 CPUs on hopper and 2 CPUs on steger).

All experimentswererunnumeroustimesoveraperiodof threeweeks.The reportedtimings are
averagesof the5 lowestelapsedwalltimesasreportedby eachbenchmark,and,therefore,representthe
bestcasescenariosthatonecouldexpectonproductionmachines.BothhopperandstegerareSGI
Origin 2000machinescontaini_lg250MHZ IP27processorsandarelocatedin the samemachineroom
atNASA AmesResearchCenter.

Theversionsof thecompiler arid MPT (message passing toolkit) modules used in all the calculations for

Table 1 correspond to MIPSpro.7.3.1. lm and mpt. 1.4.0.3, respectively. The compilation of all the

executables used the MPICH-G2 provided script/globus/mpich-64/bin/mpif77 and compiler options
"-02 -64".

Table i: Timings on one host versus split between hopper and steger

(elapsed times in seconds)

code one host one host one host hopper+steger hopper+steger

(4) (2+2) (2+2) (2+2) (2+2)

(mpi) (mpi) (single) (mpi) (single)

lu.A.4 270 282 282 281 281

sp.A.4 353 367 367 401 401

bt.A.4 651 655 655 655 655

The first, and most important, conclusion one infers from the data in Table 1 is that there is no

performance penalty asscociated with using (jobtype=single) instead of (jobtype=mpi). The average of

the 5 lowest elapsed walltimes are identical for the MPICH-G2 jobs run with either jobtype. Comparing

the timings for the (2+2) split subjobs versus the unsplit case in column 1, one sees a 4% increase in

time for the split case in lu.A.4, less than 1% increase in bt.A.4, and for sp.A.4, there is either a 4%

increase when the subjobs are on the same host or 14% increase when the subjobs are on different hosts.

From these numbers, one can infer that, of the 3 benchmarks, bt.A.4 contains the least amount of

communication (in a relative sense) between processes of ranks 0 and 1 with those of ranks 2 and 3.

Data for sp.A.4 shows the expected behaviour that the timings increase when subjobs are split between

hosts rather than being on the same host. Although not indicated in Table 1, the best single host timings

were obtained on hopper.

It is interesting to see how these timings change when the two subjobs are split between hosts that are

geographically separated at great distances. One 2-CPU subjob was run on hopper or steger on the West

Coast and the other 2-CPU subjob was run on rogallo or whitcomb on the East Coast.

The default compiler on rogallo/whitcomb is version MIPSpro.7.3.1.2m and the MPT module is the

older mpt. 1.2.1.0. The newer rapt. 1.4.0.3 module was not available on either rogallo or whitcomb. To

verify that the older mpt module did not contribute to any performance penalties on rogallo/whitcomb,

the unsplit 4-CPU MPICH-G2 jobs were re-run on rogallo/whitcomb. The timings for these runs are

shown in column 1 of Table 2, and they show no performance degradations in using the older mpt

module. Rogallo/whitcomb are also Origin 2000 machines containing 250 MHZ IP27 processors, but

they are smaller machines. Rogallo contains 4 processors, whitcomb contains 16, while hopper and

steger contain 64 and 256 processors, respectively.

Not surprisingly, the elapsed w alltimes increase dramatically when the communication needs to go

acrosslargedistances.Theincreasein timesfor thebestcasescenariosarebetween54%and 180%.In
fact,thereis quiteabit morescatterin therawdataduein partto theunpredicabilityof thenetwork
traffic. Jobson rogallo/whitcombarenotrunondedicatednodesandcaremustbeexercisedto avoid
interferencefrom otherjobs. Mostof thedatawerecollectedwhentherewerenootherjobs runningon
rogallo/whitcomb.Thereis thepossibilityto improvethequality of serviceprovidedby thenetwork,but
thatinvestigationis outsidethescopeof thiswork.

Theimportantpoint to noteagainis thatthereis noperformancepenaltyassociatedwith using
(jobtype=single)insteadof (jobtype=mpi).

Table 2: Timings on one most versus split between steger (or hopper) and

whitcomb (or rozallo) (elapsed times in seconds)

code whitcomb steger+whitcomb steger+whitcomb

(4) (2+2) (2+2)

(mpi) (inpi) (single)

lu.A.4 268 I12 412

sp.A.4 352 986 983

bt.A.4 652 1323 1016

Larger CPU experiments were run with Class B benchmarks. The results are shown in Table 3. Again,

no performance penalty is seen with using (jobtype=single). The most surprising, and as yet

unexplained, result is the significantly larger timings for bt.B. 16 when the two subjobs arerun on the

same host as opposed to separate hosts. Similar to the Class A results, the sp.B. 16 benchmark incurs the

greatest performance penalty when split between two separate hosts.

Table 3: Timings on one i%ost versus split between hopper and steger

(elapsed times in seconds)

code one host one host; one host hopper+steger hopper+steger

(16) (8+8) (8+8) (8+8) (8+8)

(mpi) (mpi) (single) (mpi) (single)

lu.B.16 313 335 335 334 334

sp.B.16 355 411 411 520 520

bt.B.16 676 750 753 691 690

Finally, in Table 4, the effect ot requesting extra CPUs for the shepherd processes on the runtimes is

explored. Each subjob contains its own shepherd. Comparing the timings in Table 4 with the

corresponding ones in Table 3, we see that the performance improvement could be as little as 1% to as

much as 9% for the bt.B.16 benchmark run split on one host. The odd man out is the lu.B.16 benchmark

which actually shows a 1% perlormance degradation when run with extra CPUs and split on one host.

Generally, allocating extra CPUs for the shepherd processes helps the much larger CPU count jobs more

than the smaller CPU count jobs. On hopper/steger, allocating an extra node (2 CPUs) for each shepherd

process when each subjob requires only 8 CPUs provides a greater opportunity for processes to be
scheduled on nodes that are further away from their communicating partners and their private data.

Instead of the 8 processes for each subjob being confined to a physically "tight" 8 CPU cluster, the extra

nodefor theshepherdprocessprovidesopportunityfor somecommunicationandmemoryaccessto be
further apart.

Table 4: Timings for ruts with scripts that account for shepherds

(elapsed times in seconds)

code one host

(8+8+2shepherd_)

(single)

hopper+steger

(8+8+2shepherds)

(single)

lu.B.16 338 329

sp.B.16 391 499

bt.B.16 693 689

The RSL used to run the lu.B. 16 benchmark in the last column of Table 4 is:

+

& (resourceManagerContact="steger.nas.nasa.gov")

(rsl_substitution : (r,proc "9"))

(count = $(nproc))

(maxWallTime=15)

(jobtype:single)

(environment = (GLOBUS DUROC SUBJOB_INDEX 0) {NP $(nproc)))

(executable = /path tc user script_on steger/lu.B.16.shepherd.scr)

(stdout = /path to stdout_file on steger)

(stderr = /path to st(!err file on steger)

(resourceManagerContact="hopper.nas.nasa.gov")

(rsl_substitution : (rproc "9"))

(count = $(nproc))

(maxWallTime=lS)

(jobtype=single)

(environment = (GLOBUS_DUROC SUBJOB_INDEX I) (NP $(nproc)))

(executable = /path tc user script on hopper/lu.B.16.shepherd.scr)

(stdout = /path to stcout file on hopper)

(stderr = /path to stderr_file on hopper)

and the user script, lu.B. 16.shepherd.scr, is:

#! /bin/csh

source /opt/modules/modu]es/init/csh

module load mpt.new

set numproc = 'expr $NP - i'

mpirun -np Snumproc /pat_ to executable/lu.B.16

Note that the 'count' RSL parameter is chosen to be 9 to account for the extra shepherd process in each

subjob, and the user script substracts that extra process out (numproc = 9 - 1 = 81) to start the mpirun

with the correct number of processes.

Summary

The three key ingredients to using modules with MPICH-G2 are:

. The 'executable' parameter in the RSL is a user-provided script which enables the module

command by sourcing the' file:

/opt/modules/modules/init/csh -- for C shell

(equivalent files are available for tcsh, bash, ksh, or sh)

2. The 'jobtype' parameter must be 'single' to run a user script.

3. The 'environment' parameters GLOBUS_DUROC_SUBJOB_INDEX must be set for each subjob

starting from 0 to the number of subjobs minus 1.

Several issues regarding correcmess, limitations, and performance associated with using

(jobtype=single) instead of the prescribed (jobtype=mpi) were addressed in the examples. The approach

presented here is robust since it involves running a user script as the executable.

Acknowledgment

I thank Ray Turney for helping me get started with running the NAS Parallel Benchmarks (NPB2.3) and

both Samson Cheung and Scott Emery for useful discussions on the NPB2.3 timing results.

Appendices

A.1

Subject: Re: request for 3VERFLOW that demonstrates bug?

Date: Wed, 18 Apr 2001 10:21:58 -0500

From: "Nicholas T. Kar_nis" <karonis@olympus.cs.niu.edu>

To: <recipient_list_gmitted>

we have figured why testg2.F (and therefore overflow) hangs when you use

mpich-g2 but why it doesn't hang when using sgi's mpi. unfortunately, the

root of the problem is an error in sgi's implementation of mpi.

the code below (bad.c) is a distillation of the problem that reliably

reproduces the hang when]sing mpich-g2 and setting procA = I; procB = 2;.

note that the code below always works (independent of procA,procB settings)

when using sgi's mpi.

........ bad.c

#include <mpi.h>
#include <stdio.h>

W

* intended to be run wit%

*/

int main(int argc, char **

{
MPI_Comm new_intercomn;

int my_rank;

at least

argv)

3 procs

int rrank;

int procA, procB;

MPI Init(&argc, &arg\);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

printf("%d: Entering main()\n", my rank); fflush(stdout);

* pick one of the following two settings for procA,procB */

/* uncomment these and program will work */

procA = 0; procB = 2;

/* uncomment the_e and program will hang */

/* procA = i; procB = 2; */

if (my_rank := procA I I my_rank :: procB)

{
if (my rank == procA)

{
rrank = procL;

}
else

{
rrank = procA;

}

printf("%d: Calling MPI_Intercomm_create()\n", my_rank);

fflush(stdout);

MPI_Intercomm_create(MPI_COMM_SELF, 0,

MPI_COMM_WORLD, rrank,

0, &new_intercomm);

}

printf("%d: Calling MPl_Finalize()\n", my_rank); fflush(stdout);

MPI_Finalize();

} /* end main() */

........ bad.c

this raises the question (the one you posed) why does the code above

work with sgi's mpi but rot with mpich-g2? the answer is in mpich-g2's

implementation of MPI Intercomm create, mpich-g2 implements some mpi

functions by calling one or more vendor-supplied mpi functions.

for example, MPI_Intercon__create is implemented by calling sgi's

MPI Intercomm_create followed by a call to sgi's MPI Comm_dup (the details

of _why_ mpich-g2 does this are too complicated to describe over email) .

consider the code below (root_of_problem.c, a slight modification of the

example program above) which approximately models the calls mpich-g2 makes

to sgi's mpi in implementing MPI_Intercomm_create. if you compile and run

the program below using _gi's mpi with procA = i; procB = 2; i think you will

find that it will hang.

........ root of problem.c

#include <mpi.h>

#include <stdio.h>

/*

* intended to be run with at least 3 procs

*/

int main(int argc, char ** argv)

{
MPI_Comm new_intercomm;

MPI_Comm new_comm;

int my rank;

int frank;

int procA, procB;

MPI Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

printf("%d: Entering main()\n", my rank); fflush(stdout);

/* pick one of the following two settings for procA,procB */

/* uncomment thes9 and program will work */

procA = 0; procB = 2;

/* uncomment these and program will hang */

/* procA = i; procB = 2; */

if (my_rank :: procA I I my_rank == procB)

{
if (my_rank =: pr3cA)

{
rrank : procB;

}
else

{
rrank = procA;

}

printf("%d: Calling MPI Intercomm create()\n", my rank);

fflush(stdout);

MPI_Intercomm_cre_te(MPI_COMM_SELF, 0,

MPI_COMM_WORLD, rrank,

0, &new intercomm);

printf("%d: Calli]g MPI_Comm dup()\n", my_rank); fflush(stdout);

MPI_Comm_dup(newintercomm, &new_comm);

printf("%d: Calling MPI Finalize()\n", my rank); fflush(stdout);

MPI Finalize();

) /* end main() */

........ root_of_problem, z

unfortunately, there's not much that we can do in mpich-g2 to resolve this

problem ... certainly not in the short term. we would have to re-design that

portion of both the mpich and the globus2 device layers to "code around" this

error in sgi's implementa%ion of mpi.

other possible alternatives are (a) modify overflow to avoid triggering

the problematic sgi mpi c]de and/or (b) petition sgi to correct their

implementation of mpi. i don't know how much 'influence' nasa and/or

the ipg has with sgi, but the later may be a reasonable alternative to

pursue.

i'm sorry that the news could not have been more hopeful, i know that

it would have been better to hear that you uncovered a bug in mpich-g2

that we have/would fix.

nick

A.Z

Subject: solution may be as simple as an upgrade

Date: Fri, 20 Apr 200] 16:55:10 -0500

From: "Nicholas T. Kalonis" <karonis@olympus.cs.niu.edu>

To: <recipient list_omitted>

there have been a couple of people at sgi that have looked at the

root of problem.c file i sent. it looks as though that this is a bug

that has been fixed ... you may need only upgrade to a later version of

sgi's mpi. here is what i've been told throughout the course of the day.

i. howard pritchard tells me that the bug was fixed as of MPT 1.4.0.2

(he was able to reprociuce the hang in MPT 1.4.0.1, but it passes with

MPT 1.4.0.2). they aze currently up to MPT 1.5.

2. bonita mcpherson contacted bron nelson and he ran root of problem

on turing and found that it ran to completion when he used

"module swap mpt mpt.].4.0.3"

could you please try youl testg2.F with mpich-g2, but making sure that you

are using sgi's MPT 1.4.[..2 or later? if that runs to completion, could you

then try overflow with MIq 1.4.0.2 or later?

please let me know how t_ings go.

nick

B.]

The standard "trick" to Lrovide an instantaneous PATH environment is to

cause SHOME/.cshrc (or $}iOME/.profile) to run just prior to executing

the command(s) by using the syntax:

/bin/csh -c <command> (cr /bin/sh -c <comand>)

One then only needs to remember that csh (or sh) is in /bin, and the

<command> can reside in any directory that is searched from the
instantaneous PATH environment.

Thus, while both the commands:

globus-job-run evelyn is

and

globusrun -s -r evelyn '&(executable=is)'

will return the error:

GRAM Job submission failed because the executable does not exist error code 5)

either,

globus-job-run evelyn /bin/csh -c is

or

globusrun -s -r evelyn '&[executable=/bin/csh) (arguments="-c is")

will produce the expected result (a listing of $HOME) . Perhaps the

only unexpected aspect is that running /bin/env or /bin/printenv under

Globus on the NAS IPG machines shows that the PATH environment is

already defined. This is due to a modification of the Globus source

at NAS that invokes $HOME,'.cshrc *after* the Globus job starts at the

target location at NAS. Prior to launching the Globus job, the executable

is searched only in $HOME if no path (relative or absolute) to the

executable is provided. See the Globus Quick Start Guide for other

examples of using this method.

B.2

Subject: Re: [Globus-discuss] Interesting Problem

Date: Thu, 06 Sep 2001 ii:13:ii -0500

From: Steve Tuecke <tuecke@mcs.anl.gov>

To: Allen Holtz <Allen. Holtz@grc.nasa.gov>

CC: discuss@globus.ozg

The GRAM services does not source your local dot files. This was a very

conscious design choice, for the following reasons:

* Starting a shell, sourcing user environments, etc add significant

overhead to job startup path. Many applications do not require this. If

you want things run under a normal shell environment you can build this

yourself as appropriate. But you don't want to impose this on all jobs.

* Much of the point of GRAM is to not require users to have to customize

each and every machine to which they submit jobs. So the base assumption

is that you have no assumed local environment, and its up to the submitting

job to build up the environment it needs. Various hooks are supplied with

GRAM to help you bootstrap up, such as RSL variable that you can use in

your submission to find the local globus install path

(GLOBUS INSTALL_PATH), a script (globus-sh-tools) that you can source to

get full paths for a bunch of common programs, etc. I'm sure there is much

more that could be done to improve this, though we have no specific plans

at the moment.

* The whole model of assuming a shell with user dot files breaks down

with some scheduling systems, and some resource setups.

-Steve

At 10:21 AM 9/6/2001, Allen Holtz wrote:

>Hi,

>

> We've got a user here who is trying to run gsincftp from

>a Globus submission. Ewgry time he tries to run the job it

>fails because gsincftp cannot be found. It appears that

>Globus is not obtaining =he PATH environment variable. Our

>job manager is LSF.
>

> When I submit a job, say "printenv," directly to LSF I get

>back several environment variables including the PATH variable.

>When I submit the job using Globus there are several environment

>variables that are not set, including PATH. So this leads me

>to believe that somehow our login scripts are not run when we

>submit the job through GLobus. Has anyone else run into this

>problem?
>

>Thanks,

>

>Allen

>--

>Allen Holtz

>Phone: (216)433-6005

>NASA Glenn Research Centgr

>21000 Brookpark Road
>Cleveland, OH 44135

Subject: Re: [Globus-disciss] Interesting Problem

Date: Thu, 06 Sep 2001 12:29:20 -0400

From: Gabriel Mateescu <gabriel.mateescu@nrc.ca>

Organization: NRC
To: Allen Holtz <All_n. Holtz@grc.nasa.gov>

CC: discuss@globus.ofg

<initiating email in the i=hread snipped>

It appears that globus-jolomanager only sets up SHOME

and SLOGNAME, without creating a login shell for

the user, which is probably a design decision.

One can set the user environment, though. For example,

one can issue

% globus-job-run <host name> /bin/csh -c "source .cshrc; printenv"

Gabriel

Subject: Re: [Globus-disc_ss] Interesting Problem

Date: Thu, 06 Sep 2001 14:18:35 -0500
From: Doru Marcusiu <marcusiu@ncsa.uiuc.edu>

To: Allen Holtz <Allen.Holtz@grc.nasa.gov>

CC: <recipient list omitted>

Allen,

The environment for an LSF batch job is passed on from the environment from
which the job was submitt_gd. In your case, once you logged on and your
.cshrc or .profile files were executed then your PATHvariable was properly
set. Then whenyou submit:ed a job directly to LSF from within that same
shell then the batch job will inherit the PATHvariable as it was set for
you in your submitting shell.

Globus doesn't execute your local startup files for your batch jobs. AT
NCSAwe suggest to our users that they always submit shell scripts as there
batch jobs. Then, within zhe shell script one can execute any appropriate
startup files such as .cs}%rcor .profile to obtain the desirable
environment for their batzh job.

<initiating email in the _:hreadsnipped>

